

Artificial Intelligence & Pediatric Surgery A Way Forward

Prof. Muhammad Saleem, Dr. Qasim Sher Khan, Dr. Umer Saleem & Dr. Ashar Bin Dawood & Dr. Maha Nayab

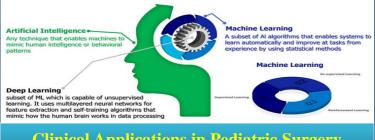
Abstract

Introduction: Artificial Intelligence (AI) is revolutionizing modern medicine and has entered pediatric surgery as a powerful partner rather than a competitor. It enhances surgical precision, diagnostic accuracy, decision-making, and postoperative care through data-driven insights. By integrating tools such as machine learning, deep learning, computer vision, and robotics, AI supports surgeons in managing complex congenital anomalies, improving outcomes, and personalizing care for each child. However, with its growing role comes concern that automation may displace parts of the surgical workforce—surgeons who do not learn or adapt to AI may risk professional redundancy. Embracing AI is therefore essential to ensure safer, smarter, and more efficient pediatric surgical care in the future.

Objectives

- Define Artificial Intelligence and its learning methods
- Highlight AI applications in Pediatric Surgery
- Familiarize pediatric surgeons with AI tools
- Discuss challenges, data privacy, and collaboration needs
- Outline future prospects in pediatric surgical innovation

What is Artificial Intelligence?


- "AI is the science and engineering of making intelligent machines." — John McCarthy, Stanford University, 1955
- "AI simulates human intelligence in machines that think and act like humans."
- "AI systems simulate cognitive functions: learning, reasoning, perception, problem-solving, and language understanding."

History & Evolution

- | Year | Milestone---"Can a Machine Think"
- | 1950 | Alan Turing introduces Turing Test
- | 1955 | John McCarthy coins the term "AI"
- | 1980s | Rule-based Expert Systems ("If–Then")
- | 2000s | Machine Learning
- | 2010s | Deep Learning & Neural Networks
- | 2020s | AI in Surgery & Robotics

Domains of AI in Pediatric Surgery

- Natural Language Processing (NLP): Automates pediatric surgical records, summaries, and coding for efficient data use.
- Machine Learning (ML): Predicts outcomes and complications in neonatal and congenital surgeries from large datasets.
- Deep Learning (DL): Interprets pediatric imaging and histopathology to detect anomalies such as atresia or Hirschsprung's disease.
- Computer Vision (CV): Guides minimally invasive procedures by real-time recognition of tiny anatomical structures in minimally invasive procedure.
- AI-Integrated Robotics: Enhances precision and safety in delicate pediatric operations like TEF repair and pyeloplasty.

Clinical Applications in Pediatric Surgery

- Helps in clinical decision making & Diagnosis
- **Preoperative:** 1. AI reconstructs 3D anatomy,
- 2. Predicts surgical risks, and
- 3. Assists in individualized operative planning.
- **Intraoperative**: 1. Provides real-time image guidance, 2. Augmented visualization 3. Robotic precision in delicate pediatric procedures.
- Postoperative: 1. Monitors recovery, 2. Predicts complications

3. Enables personalized treatment plan & follow-up

- 4. Remote care, Telemedicine & Patient education.
- Data Management: Help with EMR, Clinical Notes, Patient Data & Literature Research.

Real-time Surgical Assistance

AI analyzes surgical videos/images in real time identifies:

- Anatomical abnormalities
- Bleeding risks
 - Areas requiring extra precision
- In complex pediatric cases (TEF, biliary atresia, etc.), AI augments visualization and navigation.

Surgical Robots

- Requirements: Precision | Real-time | Safety | Robustness
- Challenges: Modeling dynamics, perception, human-robot interaction

Future Directions

- AI—robotic collaboration to enhance precision in complex pediatric surgeries.
- Integration of predictive analytics for early diagnosis and surgical planning.
- Use of AI in virtual education, simulation, and surgical skill assessment.

Challenges in Pediatric Surgery

- Require huge amount of data which lack in pediatric surgery
- Data privacy and consent issues in children.
- High cost and limited AI training among pediatric surgeons.
- Integration difficulties with hospital EMRs and surgical systems responsibility for AI-assisted surgical outcomes.

Conclusion

- AI is becoming a vital partner in pediatric surgery, improving precision, safety, and personalized care.
- There is concern that AI may automate tasks and displace part of the surgical workforce is not correct.
- A surgeon who does not learn or work alongside Al marrisk losing relevance or employment.
- The future belongs to pediatric surgeons who embrace AI to deliver smarter, safer surgical care.

A Way Forward

The future of pediatric surgery lies in closer collaboration between surgeons and AI. Embarking on this transformative journey, collaborative efforts among healthcare professionals, technology developers, and policymakers are essential to unlock AI's full potential in pediatric surgical care. This is the time for the pediatric surgical fraternity to embrace change and incorporate AI-based protocols into their practice.

References

- 1. Guo JY, Qian YF. Predicting recurrent cases of intussusception in children after air enema reduction with machine learning models. Pediatr Surg Int 2022;39:9.
- 2. Tsai AY, Carter SR, Greene AC. Artificial intelligence in pediatric surgery. Semin Pediatr Surg 2024;33:151390.
- Robertson DJ, Abramson ZR, Davidoff AM, Bramlet MT. Virtual reality applications in pediatric surgery. Semin Pediatr Surg 2024;33:151387.

Correspondence: msalimc63@gmail.com 0333-4234865

Acknowledgement: Muhammad Umer

